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Abstract: Frequentist Null Hypothesis Significance Testing (NHST) is so
an integral part of scientists’ behavior that its uses cannot be discontinued
by flinging it out of the window. Faced with this situation, the suggested
strategy for training students and researchers in statistical inference meth-
ods for experimental data analysis involves a smooth transition towards the
Bayesian paradigm. Its general outlines are as follows. (1) To present nat-
ural Bayesian interpretations of NHST outcomes to draw attention to their
shortcomings. (2) To create as a result of this the need for a change of em-
phasis in the presentation and interpretation of results. (3) Finally to equip
users with a real possibility of thinking sensibly about statistical inference
problems and behaving in a more reasonable manner. The conclusion is that
teaching the Bayesian approach in the context of experimental data analysis
appears both desirable and feasible. This feasibility is illustrated for analysis
of variance methods.
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1. Introduction

Today is a crucial time because we are in the process of defining new publi-
cation norms for experimental research. In psychology the necessity of changes
in reporting experimental results has been recently made official by the Amer-
ican Psychological Association (Wilkinson et al., 1999; American Psychological
Association, 2001). In all experimental fields, and especially in medical research,
this necessity is supported more and more by journal editors who require authors
to routinely report effect size indicators and their interval estimates, in addition
to or in place of the results of traditional Null Hypothesis Significance Testing
(NHST).

The present paper is divided into four sections. (1) I argue that NHST is an
inadequate method for experimental data analysis, not because it is an incorrect
normative model, just because it does not address the questions that scientific
research requires. I present and criticize the recommendations proposed by the
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Task Force of the American Psychological Association to overcome this inade-
quacy. (2) As an alternative, I suggest teaching Bayesian methods as a therapy
against the misuses and abuses of NHST. (3) The feasibility of this teaching is
illustrated in the context of analysis of variance methods. (4) Its advantages
and difficulties are discussed. In conclusion, training students and researchers in
Bayesian methods should become an attractive challenge for statistical instruc-
tors.

2. The Current Context of the Experimental Research

2.1 The stranglehold of null hypothesis significance tests

From the outset (Boring, 1919; Tyler, 1931; Berkson, 1938; etc.), NHST
has been subject to intense criticism, both on theoretical and methodological
grounds, not to mention the sharp controversy that opposed Fisher to Neyman
and Pearson on the very foundations of statistical inference. In the sixties there
was more and more criticism, especially in the behavioral and social sciences
(see especially Morrison and Henkel, 1970). The fundamental inadequacy of
NHST in experimental data analysis has been denounced by the most eminent
and most experienced scientists (see Poitevineau, 1998; Lecoutre, Lecoutre and
Poitevineau, 2001).

Several empirical studies emphasized the widespread existence of common
misinterpretations of NHST among students and psychological researchers (Rosen-
thal and Gaito, 1963; Nelson, Rosenthal and Rosnow, 1986; Oakes, 1986; Zuck-
erman, Hodgins, Zuckerman and Rosenthal, 1993; Falk and Greenbaum, 1995;
Mittag and Thompson, 2000; Gordon, 2001; Poitevineau and Lecoutre, 2001).
Recently, Haller and Krauss (2002)1 found out that most methodology instructors
who teach statistics to psychology students, including professors who work in the
area of statistics, share their students’ misinterpretations. Furthermore, Lecoutre,
Poitevineau and Lecoutre (2003) showed that professional applied statisticians
from pharmaceutical companies are not immune to misinterpretations of NHST,
especially if the test is nonsignificant.

If some of the above results could be interpreted as an individual’s lack of
mastery, this explanation is hardly applicable to professional statisticians. More
likely these results reveal that NHST does not address the questions that scientific
research requires. Thus, users must resort to a more or less “näıve” mixture of
NHST results and other information. In other words they must make “judgmen-
tal adjustments” (Bakan, 1966; Phillips, 1973, p.334) or “adaptative distorsions”
(M.-P. Lecoutre, 2000, p.74) designed to make an ill-suited tool fit their true

1Retrieved March 9, 2006 from http://www.mpr-online.de.
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needs. So the confusion between statistical significance and scientific significance
(“the more significant a result is, the more scientifically interesting it is, and/or
the larger the true effect is”) illustrates such an adjustment and can be seen as
an adaptative abuse. The improper uses of nonsignificant results as “proof of the
null hypothesis” is again more illustrative; indeed, faced with a nonsignificant
result, users seem to have no other choice but to either interpret it as proof of the
null hypothesis or attempt to justify it by citing an anomaly in the experimen-
tal conditions or in the sample. Also the “incorrect” interpretations of p-values
as “inverse” probabilities (1-p is “the probability that the alternative hypothesis
is true” or is considered as “evidence of the replicability of the result”), even
by experienced users, reveal questions that are of primary interest for the users.
Such interpretations suggest that “users really want to make a different kind
of inference” (Robinson and Wainer, 2002, p.270). Moreover, many psychology
researchers explicitly state that they are dissatisfied with current practices and
appear to have a real consciousness of the stranglehold of NHST (M.-P. Lecoutre,
2000). They use significance tests only because they know no other alternative,
but they express the need for inferential methods that would be better suited for
answering their specific questions. In this context a consensus consists in expect-
ing the statistical analysis to express in an objective way “what the data have to
say” independently of any outside information. Indeed very few researchers state
that they want to integrate outside information – notably theoretical background
– into the statistical analysis of data.

2.2 Time for change in teaching statistical inference methods

These findings encourage the many recent attempts to improve the habitual
ways of analyzing and reporting experimental data. We can expect with Kirk
(2001, p.217) that these attempts “will set off a chain reaction” and in particular
that “teachers of statistics, methodology, and measurement courses will change
their courses” and that “faculties will require students to learn the full arsenal
of quantitative and qualitative statistical tools”. We cannot accept that future
statistical inference methods users will continue using non appropriate procedures
“because they know no other alternative”.

So the time has come to create a shift of emphasis in the teaching of statistical
inference methods, even in introductory courses for non-statistician students. A
more and more widespread opinion is that inferential procedures that bypass the
common misuses of significance tests while providing genuine information about
the size of effects must be taught in addition to (or even instead of ) NHST. For
this purpose, confidence intervals, likelihood, or Bayesian methods are clearly ap-
propriate (e.g., Goodman and Berlin, 1994; Nester, 1996; Rouanet, 1996). Today,
the majority trend is to advocate the use of confidence intervals. The following
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extracts are proposed guidelines by the Task Force of the American Psychologi-
cal Association (Wilkinson et al., 1999) for revising the statistical section of the
American Psychological Association Publication Manual (italics are mines).

Hypothesis tests. “It is hard to imagine a situation in which a dichoto-
mous accept-reject decision is better than reporting an actual p value or, better
still, a confidence interval. Never use the unfortunate expression ‘accept the null
hypothesis.’ Always provide some effect-size estimate when reporting a p value.”

Interval estimates. “Interval estimates should be given for any effect sizes
involving principal outcomes. Provide intervals for correlations and other coeffi-
cients of association or variation whenever possible.”

Effect sizes. Always present effect sizes for primary outcomes. If the units
of measurement are meaningful on a practical level (e.g., number of cigarettes
smoked per day), then we usually prefer an unstandardized measure (regression
coefficient or mean difference) to a standardized measure.”

Power and sample size. “Provide information on sample size and the
process that led to sample size decisions. Document the effect sizes, sampling
and measurement assumptions, as well as analytic procedures used in power cal-
culations. Because power computations are most meaningful when done before
data are collected and examined, it is important to show how effect-size estimates
have been derived from previous research and theory in order to dispel suspicions
that they might have been taken from data used in the study or, even worse,
constructed to justify a particular sample size.”

2.3 Further difficulties

“It would not be scientifically sound to justify a procedure by frequentist argu-
ments and to interpret it in Bayesian terms” (Rouanet, 2000, in Rouanet et al.,
page 54).

Confidence intervals could quickly become a compulsory norm in experimen-
tal publications. However, for many reasons due to their frequentist conception,
confidence intervals can hardly be viewed as the ultimate method. Indeed the
appealing feature of confidence intervals is the result of a fundamental misunder-
standing. As is the case with significance tests, the frequentist interpretation of a
95% confidence interval involves a long run repetition of the same experiment: in
the long run 95% of computed confidence intervals will contain the “true value”
of the parameter; each interval in isolation has either a 0 or 100% probability of
containing it. It is so strange to treat the data as random even after observation
that the orthodox frequentist interpretation of confidence intervals does not make
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sense for most users. It is undoubtedly the natural (Bayesian) interpretation of
confidence intervals in terms of “a fixed interval having a 95% chance of including
the true value of interest” which is their appealing feature.

Even experts in statistics are not immune from conceptual confusions about
frequentist confidence intervals. So, for instance, Rosnow and Rosenthal (1996,
p.336) take the example of an observed difference between two means d = +0.266.
They consider the interval [0,+532] whose bounds are the “null hypothesis” (0)
and what they call the “counternul value” (2d = +0.532), computed as the sym-
metrical value of 0 with regard to d. They interpret this specific interval [0,+532]
as “a 77% confidence interval” (0.77 = 1−2×0.115, where 0.115 is the one-sided
p-value for the usual t test). If we repeat the experience, the counternull value
and the p-value will be different, and, in a long run repetition, the proportion
of null-counternull intervals that contain the true value of the difference δ will
not be 77%. Clearly, 0.77 is here a data dependent probability, which needs a
Bayesian approach to be correctly interpreted.

Beyond these difficulties with frequentist confidence intervals, the proposed
guidelines are both partially technically redundant and conceptually incoherent.
Just as NSHT, they should result in teaching a set of recipes and rituals (power
computations, p-values, confidence intervals. . . ), without supplying a real statis-
tical thinking. In particular, one can be afraid that students (and their teachers)
continue to focus on the statistical significance of the result (only wondering
whether the confidence interval includes the null hypothesis value) rather than
on the full implications of confidence intervals. As the authors of these guidelines
state, it is probably true that “statistical methods should guide and discipline our
thinking but should not determine it .” However it is no less true that it would be
“folly of blindly adhering to a ritualized procedure” (Kirk, 2001, p.207).

3. The Bayesian Alternative

We then naturally have to ask ourselves whether the “Bayesian Choice” will
not, sooner or later, be unavoidable (Lecoutre, Lecoutre and Poitevineau, 2001).

3.1 What is Bayesian inference for experimental data analysis?

“But the primary aim of a scientific experiment is not to precipitate decisions,
but to make an appropriate adjustment in the degree to which one accepts, or
believes, the hypothesis or hypotheses being tested” (Rozeboom, 1960).

For the statistician, the role of probabilities, an thus the debates between
“frequentists” and “Bayesians”, can be expressed in these terms (Lindley, 1993):
“whether the probabilities should only refer to data and be based on frequency
or whether they should also apply to hypotheses and be regarded as measures of
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beliefs” (italics added). Bayesian inference, based on a more general and more
useful working definition of probability, can address directly problems that the
frequentist approach can only address indirectly by resorting to arbitrary tricks.

The most common criticism of the Bayesian approach by frequentists is the
need for prior probabilities. Many Bayesians place emphasis on a subjective
perspective. An extremist view is that of Savage (1954) who claimed his intention
to incorporate prior opinions – not only prior knowledge – into scientific inference.
Moreover, by their insistence on the decision-theoretic elements of the Bayesian
approach, many authors have obscured the contribution of Bayesian inference to
experimental data analysis and scientific reporting. This can be the reasons why
until now scientists have been reluctant to use Bayesian inferential procedures in
practice for analysing their data.

Without dismissing the merits of the decision-theoretic viewpoint, it must be
recognized that there is another approach which is just as Bayesian which was
developed by Jeffreys in the thirties (Jeffreys, 1998/1939). Following the lead
of Laplace (1986/1825), this approach aimed at assigning the prior probability
when “nothing” was known about the value of the parameter. In practice, these
noninformative prior probabilities are vague distributions which, a priori , do not
favor any particular value. Consequently they let the data “speak for themselves”
(Box and Tiao, 1973, p.2). In this form the Bayesian paradigm provides, if not
objective methods, at least reference methods appropriate for situations involving
scientific reporting. This approach of Bayesian inference is now recognized like a
standard: “We should indeed argue that noninformative prior Bayesian analysis
is the single most powerful method of statistical analysis” (Berger, 1985, p.90).

3.2 Routine Bayesian methods for experimental data analysis

For more than twenty-five years now, with other colleagues in France I have
worked in order to develop routine Bayesian methods for the most familiar situa-
tions encountered in experimental data analysis (see e.g., Rouanet and Lecoutre,
1983; Lecoutre, Derzko and Grouin, 1995; Lecoutre, 1996; Lecoutre and Char-
ron, 2000; Lecoutre and Poitevineau, 2000; Lecoutre and Derzko, 2001). These
methods can be used and taught as easily as the t, F or chi-square tests. We
argued that they offer promising new ways in statistical methodology (Rouanet
et al., 2000).

We have especially developed “noninformative methods”. In order to pro-
mote them, it seemed important to us to give them a more explicit name than
“standard”, “noninformative” or “reference”. We proposed to call them fiducial
Bayesian (B. Lecoutre, 2000). This deliberately provocative name pays tribute
to Fisher’s work on scientific inference for research workers (Fisher, 1990/1925).
It indicates their specificity and their aim to let the statistical analysis express
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what the data have to say independently of any outside information. Fiducial
Bayesian methods are concrete proposals in order to bypass the inadequacy of
NHST. They have been applied many times to real data and have been accepted
well by experimental journals (see e.g., Hoc and Leplat, 1983; Ciancia et al., 1988;
Lecoutre, 1992; Desperati and Stucchi, 1995; Hoc, 1996; Amorim and Stucchi,
1997; Amorim et al., 1997; Clment and Richard, 1997; Amorim et al., 1998;
Amorim et al., 2000; Lecoutre et al., 2003, 2004; and many experimental articles
published in French).

3.3 The desirability of Bayesian methods

Clearly, the Bayesian approach offers more flexibility to experimental data
analysis. In order to illustrate its advantages, I will consider the pharmaceutical
example used by Student (1908) in his original article on the t test. Given,
for each of the n=10 patients the two “additional hour’s sleep” gained by the
use of two soporifics [1 and 2], Student used his t test for an inference about
the difference of means between the two soporifics, “by making a new series,
subtracting 1 from 2” (the ten individual differences are given in Table 1). Then
he computed the mean +1.58 [d] and the (uncorrected) standard deviation 1.17
[hence s = 1.23, corrected for df ] of this series, and concluded from his table of
the “t distribution” that “the probability is .9985 or the odds are about 666 to 1
than 2 is the better soporific” (which is not an orthodox frequentist formulation!).
In modern statements, we compute the t test statistic for the inference about
a normal mean t=+1.58/(1.23/

√
10)=+4.06 and we find the one-sided p-value

0.0014 (9 df ).

Table 1: Rection time experiment: Basic data and relevant data for interaction
and for group cpmparisons.

+1.2 +2.4 +1.3 +1.3 0 +1.0 +1.8 +0.8 +4.6 +1.4

Some features, outlined hereafter, illustrate the desirability of Bayesian meth-
ods that are an alternative to the Task Force Guidelines.

Hypothesis tests: Fiducial Bayesian interpretation of p-values. Fidu-
cial-Bayesian inference provides insightful interpretations of frequentist proce-
dures in intuitively appealing and readily interpretable forms using the natural
language of Bayesian probability. For instance, the one-sided p-value of the t
test is exactly the fiducial Bayesian probability that the true difference δ has the
opposite sign of the observed difference. Given the Student’s data (p = 0.0014,
one-sided), there is a 0.14% posterior probability of a negative difference and
a 99.86% complementary probability of a positive difference. In the Bayesian
framework these statements are statistically correct .
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Moreover the fiducial Bayesian interpretation of p-values clearly points out
the methodological shortcomings of NHST. It becomes apparent that the p-value
in itself says nothing about the magnitude of δ. On the one hand, even a “highly
significant” outcome (p “very small”) only establishes that δ has the same sign
as the observed difference d. On the other hand, a “nonsignificant” outcome
is hardly worth anything, as exemplified by the fiducial Bayesian interpretation
Pr(δ < 0) = Pr(δ > 0) = 1/2 of a “perfectly nonsignificant” test (i.e. d = 0).

Interval estimates: Fiducial Bayesian interpretation of the usual CI.
Another important feature is the interpretation of the usual confidence interval
in natural terms. In the Bayesian framework, this interval is usually termed a
credibility interval or a credible interval , which explicitly accounts for the differ-
ence in interpretation. It becomes correct to say that “there is a 95% probability
(or guarantee) of δ being included between the fixed bounds of the interval” (con-
ditionally on the data), i.e. for the Student’s example between +0.70 and +2.46
hours.

Effect sizes: Straight Bayesian answers. Beyond the reinterpretations of
the usual frequentist procedures, other Bayesian statements give straight answers
to the question of effect sizes. We can compute the probability that δ exceeds a
fixed, easier to interpret, additional time; for instance “there is a 91.5% probabil-
ity of δ exceeding one hour”. Since the units of measurement are meaningful, it
is easy to assess the practical significance of the magnitude of δ. To summarize
the results, it can be reported that “there is a 91.5% posterior probability of a
large positive difference (δ > +1), a 8.4% probability of a positive but limited
difference (0 < δ < +1), and a 0.14% probability of a negative difference”. Such
a statement has no frequentist counterpart.

The question of replication of observations. The Bayesian inference
offers a direct and very intuitive solution. Given the performed experiment, the
predictive distribution expresses our state of knowledge about future data. For
instance, for an additional experimental unit, “there is a 87.4% probability of
a positive difference and a 78.8% probability of a difference exceeding half one
hour”, and for a future sample of size 10, “there is a 99.1% probability of a positive
difference and a 95.9% probability of a difference exceeding half an hour”.

Power and sample size: Bayesian data planning and monitoring.
“An essential aspect of the process of evaluating design strategies is the ability
to calculate predictive probabilities of potential results.” (Berry, 1991, p.81).
Bayesian predictive procedures give users a very appealing method to answer
essential questions such as: “how big should be the experiment to have a rea-
sonable chance of demonstrating a given conclusion?”; “given the current data,
what is the chance that the final result will be in some sense conclusive, or on the
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contrary inconclusive?” These questions are unconditional in that they require
consideration of all possible value of parameters. Whereas traditional frequen-
tist practice does not address these questions, predictive probabilities give them
direct and natural answer.

In particular, from a pilot study, the predictive probabilities on credibility
limits give a useful summary to help in the choice of the sample size of an exper-
iment. If the data from the pilot study are included in the final analysis, final
results for the whole data can be predicted as well (Lecoutre, 2001). Predic-
tive procedures can also be used to aid the decision to abandon an experiment
if the predictive probability appears poor. Some relevant references are Berry
(1991), Lecoutre, Derzko and Grouin (1995), Joseph and Bélisle (1997), Dignam
et al., (1998), Johns and Andersen (1999), Lecoutre (2001), Lecoutre, Mabika
and Derzko (2002).

Introducing “informative” priors. If the use of noninformative priors has
a privileged status in order to gain “public use” statements, other Bayesian tech-
niques also have an important role to play in experimental investigations. They
are ideally suited for combining information from several studies and therefore
planning a series of experiments. Realistic uses of these techniques have been
proposed. When a fiducial Bayesian analysis suggests a given conclusion, various
prior distributions expressing results from other experiments or subjective opin-
ions from specific, well-informed individuals (“experts”), which whether skeptical
or enthusiastic, can be investigated to assess the robustness of conclusions (see
in particular Spiegelhalter, Freedman and Parmar, 1994). With regard to scien-
tists’ need for objectivity, it could be argued with Dickey (1986, p.135) that “an
objective scientific report is a report of the whole prior-to-posterior mapping of a
relevant range of prior probability distributions, keyed to meaningful uncertainty
interpretations”.

3.4 The Feasibility of Bayesian Methods

We especially developed Bayesian methods in the analysis of variance frame-
work, which is an issue of particular importance for experimental data analy-
sis. Experimental investigations frequently involve complex designs, especially
repeated-measures designs. Bayesian procedures have been developed on the
subject, but they are generally thought difficult to implement and not included
in the commonly available computer packages. As a consequence the possibility
of teaching them is still largely questionable for many statistical teachers.

A simple way to deal with the complexity of experimental designs it is to
use the specific analysis approach. Roughly speaking, a specific analysis for a
particular effect consists in handling only data that are relevant for it . Most of-



216 Bruno Lecoutre

ten, the design structure of these relevant data is much simpler that the original
design structure, and the number of “nuisance” parameters involved in the spe-
cific inference is drastically reduced. Consequently, in the Bayesian framework,
relatively elementary procedures can be applied and realistic prior distributions
can be investigated. Furthermore, necessary and minimal assumptions specific to
each particular inference are made explicit. When these assumptions are under
suspicion, alternative procedures can be easily envisaged: for instance we can do
a transformation of the relevant data, or again use solutions that do not assume
the equality of variances, etc. Thus, the advantages of the specific analysis ap-
proach over the conventional general model approach appear overwhelming both
for the feasibility and the understanding of procedures.

Further justifications can be found in Rouanet and Lecoutre (1983) (see also
Lecoutre, 1984 and Rouanet, 1996). Note that the interest of the specific anal-
ysis approach to analysis of variance is often implicitly recognized. In this way,
Hand and Taylor (1987) suggested systematically deriving relevant data before
using commonly available computer packages. In a more particular context Jones
and Kenward (1989) developed a “simple and robust analysis for two-group dual
designs” (page 160) which is typically a specific analysis.

Three decisive advantages of the specific analysis approach can be stressed.
(1) All the traditional analysis of variance procedures can be derived as a direct
extension of the basic procedures used in descriptive statistics (means, standard
deviations) and inferential statistics (Student’s t tests). (2) Complex designs
involving several factors can easily be handled; in particular, the exact valid-
ity assumptions for each inference can be made explicit and comprehensible.
(3) Bayesian procedures become straightforward to implement.

Statistical computer programs based on the specific inference approach have
been developed (Lecoutre and Poitevineau, 1992; Lecoutre, 1996; Lecoutre and
Poitevineau, 20052). They incorporate both traditional frequentist practices (sig-
nificance tests, confidence intervals) and Bayesian procedures (non informative
and conjugate priors). These procedures are applicable to general experimen-
tal designs (in particular, repeated measures designs), balanced or not balanced,
with univariate or multivariate data, and covariables.

Other packages designed to teach or learn elementary Bayesian Statistical
inference are First Bayes (O’Hagan, 1996)3 and a package of Minitab macros
(Albert, 1996).

I have restricted here my presentation to the analysis of variance frame-
work; however similar materials are also available for inferences about propor-

2Retrived March 9, 2006 from http://www-rocq.inria.fr/axis/modulad/logiciels.htm#lepac.
3O’Hagan, A. (1996). First Bayes [Teaching package for elementary Bayesian Statistics].

Retrieved march 9, 2006 from http://www.shef.ac.uk/∼st1ao/1b.html.
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tions (Lecoutre, Derzko and Grouin, 1995; Bernard, 2000; Lecoutre and Charron,
2000).

4. Training Students and Researchers in Bayesian Methods

“It is their straightforward, natural approach to inference that makes them
[Bayesian methods] so attractive” (Schmitt, 1969, preface)

In 1976 Jaynes wrote “As a teacher, I therefore feel that to continue the time
honoured practice – still in effect in many schools – of teaching pure orthodox
statistics to students, with only a passing sneer at Bayes and Laplace, is to per-
petuate a tragic error which has already wasted thousands of man-years of our
fines mathematical talent in pursuit of false goals. If this talent had been directed
toward understanding Laplace’s contributions and learning how to use them prop-
erly, statistical practice would be far more advanced than it is.” (Jaynes, 1976,
p.256). It would be folly to perpetuate this error! For more than twenty-five
years now, with my colleagues we have gradually introduce Bayesian methods in
courses and seminars for audiences of various backgrounds, especially in psychol-
ogy. Our statistical teaching and consulting experience revealed us that these
methods were far more intuitive and much closer to the thinking of scientists
than frequentist procedures. So we completely disagree with Moore (1997) who
claimed that “Bayesian reasoning is considerably more difficult to assimilate than
the reasoning of standard inference”.

4.1 Teaching strategy

Since experimental publications are full of significance tests, students and re-
searchers are (and will be again in the future) constantly confronted to their use.
NHST is so an integral part of scientists’ behavior and of experimental teaching
that its misuses and abuses should not be discontinued by flinging it out of the
window, even if I completely agree with Rozeboom (1997, p.335) that NHST
is “surely the most bone-headedly misguided procedure ever institutionalised in
the rote training of science students”. This reality cannot be ignored, and it is
a challenge for the teachers of statistics to introduce Bayesian inference without
discarding, neither NHST nor the “official” guidelines that tend to supplant it by
confidence intervals. So I argue that the sole effective strategy is a smooth tran-
sition towards the Bayesian paradigm (see Lecoutre, Lecoutre and Poitevineau,
2001).

The suggested teaching strategy is to introduce Bayesian methods as follows.
(1) To present natural fiducial Bayesian interpretations of NHST outcomes to
call attention about their shortcomings. (2) To create as a result of this the
need for a change of emphasis in the presentation and interpretation of results.
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(3) Finally to equip students with a real possibility of thinking sensibly about
statistical inference problems and behaving in a more reasonable manner.

From an interactive use of our computer programs, a very limited set of
preliminary notions is needed to introduce basic ANOVA procedures, that is in-
ferences about one degree of freedom effects in complex designs. The possibility
of applying Bayesian methods in the context of realistic complex experimental
designs is an essential requirement for motivating students and researchers. The
attention can be concentrated about the basic principles and the practical mean-
ing of procedures. As a consequence, the principles of advanced techniques can
be more easily understood, independently of their mathematical difficulty.

4.2 First example: student data

It is remarkable to notice that the Student’s example presented in Section 3.3
was a typical application of the specific analysis approach. The basic data were
for each of the n=10 patients the difference between the two “additional hour’s
sleep gained by the use of hyoscyamine hydobromide [an hypnotic]”, the hour’s
sleep being measured without drug and after treatment with either (1) “dextro
hyoscyamine hydobromide” or (2) “laevo hyoscyamine hydobromide” (note that
they already were derived data). The Student’s analysis is a typical example of
specific inference: it only involves the elementary inference about a normal mean.

In the same way, we can apply to the data in Table 1 the elementary Bayesian
inference about a normal mean, with only two parameters, the population mean
difference δ and the standard deviation σ. Assuming the usual noninformative
prior, the posterior (fiducial Bayesian) distribution of δ is a generalized (or scaled)
t distribution. It is centered on the mean observed difference d = +1.58 and has
a scale factor e = s/

√
n = 0.39. The distribution has the same degrees of freedom

q=9 as the t test.
This is written δ ∼ d + etq, or again δ ∼ tq(d, e2) – hence here δ ∼ t9(+1.58,

0.392) – by analogy with the normal distribution (note that this distribution must
not be confused with the noncentral t distribution, familiar to power analysts).
The scale factor e is the denominator of the usual t test statistic, that is e = d/t
(assuming d �= 0). In consequence, the fiducial Bayesian distribution of δ can be
directly derived from t=+4.06. This result brings to the fore the fundamental
property of the t test statistic of being an estimate of the experimental accu-
racy, conditionally on the observed value d. More precisely, (d/t)2 estimates the
sampling error variance of d.

Resorting to computers solves the technical problems involved in the use of
Bayesian distributions. This gives the students an attractive and intuitive way
of understanding the impact of sample sizes, data and prior distributions. The
posterior distribution can be investigated by means of visual display. The fiducial
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Bayesian interpretation of usual significance tests is made explicit. The credibility
limits for a given probability (or guarantee), or conversely the probability of a
given interval can be computed.

An important aspect of statistical inference is making predictions. Again, the
Bayesian inference offers a direct and very intuitive solution. For instance, what
can be said about the value of the difference d′ that would be observed for new
data? The predictive distribution for d′ in a future sample of size n′ is naturally
more scattered than the distribution of δ relative to the population (this is all
the more true since the size of the new sample is smaller). Thus the fiducial
Bayesian (posterior) predictive distribution for d′, given the value d observed in
the available data, is again a generalized t distribution (naturally centered on d),
d′ ∼ tq(d, e2 + e′2), where e′ = s/

√
n′. In fact, the uncertainty about δ given the

available data (reflected by e2) is added to the uncertainty about the results of
the future sample when δ is known (reflected by e′2). Given the Student’s data,
the predictive distribution is d′ ∼ t9(+1.58, 1.292) for a future experimental unit
(n′ = 1) and d′ ∼ t9(+1.58, 0.552) for a replication with the same sample size
(e′ = e).

4.3 Second example: reaction time experiment

As an illustration of a more complex design, let us consider the following
example, derived from Holender and Bertelson (1975). In a psychological ex-
periment, the subject must react to a signal. The experimental design involves
two crossed repeated factors: Factor A (signal frequency) with two levels (a1:
frequent and a2: rare), and Factor B (foreperiod duration), with two levels (b1:
short and b2: long). The main research hypothesis is a null (or about null) inter-
action effect between factors A and B (additive model). The n = 12 subjects are
divided into three groups of four subjects each. The data treated here and re-
ported in Table 2 are reaction times in ms (averaged over trials). They have been
previously analysed in detail with Bayesian methods in Rouanet and Lecoutre
(1983), Rouanet (1996) and Lecoutre and Derzko (2001). I will focus here on
the technical aspects of the specific analysis approach for one degree of freedom
sources of variations, but this approach can be easily generalized to several df
sources.

Here the basic data consists of three “groups” and four “occasions” of mea-
sure. Since A and B are both two-level factors, their interaction can be repre-
sented by a single contrast among the four occasions. Let us consider the contrast
with coefficients [wo]o∈O = [+1 − 1 − 1 + 1]. The coefficients [wo] are called co-
efficients of derivation upon occasions. The derived relevant data for interaction
consist of the twelve individual interaction effects reported in Table 2. They
constitute a simple (balanced) one-way layout and the interaction effect amounts
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to the overall mean δ. This mean is given by the coefficients of derivation upon
groups [vg]g∈G = [1/3 1/3 1/3].

Table 2: Reaction time experiment: basic data and relevant data for interaction
and for groups comparisons

derived individual data
group subject a1b1 a2b1 a1b2 a2b2 interaction effect mean

g1 1 387 435 416 473 +9 427.75
2 321 336 343 368 +10 342.00
3 333 362 358 390 +3 360.75
4 344 430 352 393 -45 379.75

mean dg1 = −5.75 dg1 = 377.56 ms
sg1 = 26.35 ms sg1 = 36.84 ms

g2 5 368 432 432 504 +8 434.00
6 357 367 394 411 +7 382.25
7 336 346 340 421 +71 360.75
8 387 454 438 496 -9 443.75

mean dg2 = +19.25 ms dg2 = 405.19 ms
sg2 = 35.37 ms sg2 = 40.08 ms

g3 9 345 408 417 479 -1 412.25
10 358 389 372 407 +4 381.50
11 317 375 341 392 -7 356.25
12 386 510 464 513 -75 468.25

mean dg3 = −19.75 ms dg3 = 404.56 ms
sg3 = 37.11 ms sg3 = 48.24 ms

mean 353.3 403.7 388.9 437.3 d = −2.08 ms d = 395.71 ms
s = 33.28 ms s = 41.99 ms

As a general result, a one df effect can be tested from the t statistic t =
d/e = −0.217, where e = bs = 9.61 is precisely the scale factor of the fiducial
Bayesian distribution. The constant b depends on the coefficients of derivation
upon groups vg and on the group sizes fg (here fg1 = fg2 = fg3 = 4): b2 =∑

(v2
g/fg) = 1/12 = 0.2892. The within group variance s2 = 33.282 is the mean

of the group variances weighted by their degrees of freedom fg − 1. In the case of
unequal group sizes we could consider either the unweighted mean or the weighted
mean, given respectively by the coefficients [vg]g∈G = [1/3 1/3 1/3] (unweighted)
and [vg]g∈G = [fg1/12 fg2/12 fg3/12] (weighted).

The following general results ensure the link with the traditional ANOVA
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procedures. The two mean squares of the usual ANOVA F ratio,

F = MSA.B/MSS(G).A.B = 0.047,

are respectively proportional to d2 and s2: MSA.B = (d/(ab))2 = 13.02 and
MSS(G).A.B = (s/a)2 = 276.84. The constant a only depends on the coefficients
of derivation upon occasions wo: a2 =

∑
w2

o = 4. All these formulae are made
explicit in our computer programs. With these notations, all inferential (frequen-
tist and Bayesian) procedures are simply modeled on the inference on a normal
mean.

Any one df source of variation of interest can be analyzed in the same way.
Suppose for instance that group g3 is a control group; then we may plan to
decompose some effects involving factor G according the following two contrasts:
g2, g1 (opposing g2 and g1) and g3, g1 g2 (opposing g3 on the one hand and g1
and g2 on the other hand). The specific analysis of these two contrasts involves as
relevant data the twelve individual means reported in Table 2. The coefficients
of derivation upon occasions are [wo] = [1/4 1/4 1/4 1/4] (a2 = 1/4) and we
consider for the derived data the two (orthogonal) contrasts between groups with
the respective coefficients [−1 +1 0] (b2 = 1/2) and [−1/2 −1/2 +1] (b2 = 1/2).
From the relevant data for interaction, we can again analyze the interactions
between A.B and these two contrasts. Table 3 gives a summary of the specific
analyses of all sources of variations.

Table 3: Reaction time experiment: Summary table of specific analyses

Between subjects [wo] [vg] a b d s e=bs

g2, g1 aaaa egf 0.5 0.7071 +27.63 41.99 29.69
g3, g1 g2 aaaa ccf 0.5 0.6124 +13.19 41.99 25.71

Within subjects [wo] [vg] a b d s e=bs

a2, a1 cbcb ddd 1 0.2887 +49.38 22.26 6.42
a2, a1.g2, g1 cbcb egf 1 0.7071 +5.75 22.26 15.74
a2, a1.g3, g1 g2 cbcb ccf 1 0.6124 +14.63 22.26 13.63
b2, b1 cbcb ddd 1 0.2887 +34.63 20.80 6.01
b2, b1.g2, g1 ccbb egf 1 0.7071 +30.50 20.80 14.71
b2, b1.g3, g1g2 ccbb ccf 1 0.6124 +3.75 20.80 12.74
A.B feef ddd 2 0.2887 −2.08 33.28 9.61
A.B.g2, g1 feef egf 2 0.7071 +25.00 33.28 23.53
A.B.g3, g1 g2 feef ccf 2 0.6124 −26.50 33.28 20.38

Codings for the weights: a=+1/4, b=1/2, c=−1/2, d=1/3, e=−1, f=1, g=0.
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5. A Challenge for Statistical Instructors

Training students and researchers in Bayesian methods should become an
attractive challenge for statistical instructors. It is often claimed that Bayesian
methods need new probabilistic concepts, in particular the Bayesian definition of
probability, conditional probabilities and Bayes’ formula. However, since most
people use “inverse probability” statements to interpret NHST and confidence
intervals, these notions are already – at least implicitly – involved in frequentist
methods. Which is simply required for teaching the Bayesian approach is a very
natural shift of emphasis about these concepts, showing that they can be used
consistently and appropriately in statistical analysis.

5.1 A natural change of emphasis about probabilistic concepts

“[Bayesian analysis provides] direct probability statements – which are what
most people wrongly assume they are getting from conventional statistics” (Grunk-
emeier and Payne, 2002, p.1901)

A recent empirical study (Albert, 2003) indicates that students in introduc-
tory statistics class are generally confused about the different notions of proba-
bilities. Clearly, teaching NHST and confidence intervals can only add to con-
fusion, since these methods are justified by frequentist arguments and generally
(mis)interpreted in Bayesian terms. Ironically these heretic interpretations are
encouraged by the duplicity of most statistical instructors who tolerate and even
use them. For instance Pagano (1990, p.288) describes a 95% confidence interval
as “an interval such that the probability is 0.95 that the interval contains the pop-
ulation value”. Other authors claim that the “correct” frequentist interpretation
they advocate can be expressed as “we can be 95% confident that the population
mean is between 114.06 and 119.94” (Kirk, 1982, page 43), “95% confident that
θ is below B(X)” (Steiger and Fouladi, 1997, p.230) or “we may claim 95% confi-
dence that the population value of multiple R2 is no lower than .0266” (Smithson,
2001, p.614). It is hard to imagine that students or scientists can understand that
“confident” refers here to a frequentist view of probability! So, in a recent paper,
Schweder and Hjort (2002) gave the following revealing definitions of probability:
“we will distinguish between probability as frequency, termed probability, and
probability as information/uncertainty, termed confidence” (italics added). After
many attempts to teach the “correct” interpretation of frequentist procedures,
I completely agree with Freeman (1993) that in these attempts “we are fighting
a losing battle”.

Regarding conditional probability and Bayes’ formula, the traditional teach-
ing of frequentist procedures is also misleading. This is especially revealed by
the fact that even experienced researchers frequently confused “the [conditional ]
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probability of making a Type I error if the null hypothesis is true” and “the
marginal probability of making a Type I error”. So Azar (1999)4 wrote: “[a sig-
nificant result] indicates that the chances of the finding being random is only 5
percent or less”; this statement was later commented by Bakeman (1999)5 as “a
misunderstanding that generations of instructors of statistics clearly have failed
to eradicate”. This can be due to the fact that little or no emphasis is placed on
conditional probabilities in most of the frequentist presentations. For instance,
standard statistical textbooks speak about “the probability of making a Type I
[Type 2] error” by omitting the conditional argument “given H0 [H1]” (see e.g.,
Kirk, 1982, pages 36-37). I believe with Berry (1997) that conditional probabili-
ties are intuitive for many people. Also, Bayes’ formula is easily understood if it
is introduced from contingency tables with probabilities interpreted as frequen-
cies so that prior probabilities can be supposed exactly known (see Box and Tiao,
1973, p.12).

Considerable difficulties are due to the mysterious and unrealistic use of the
sampling distribution for justifying NHST and confidence intervals. Frequent
questions asked by students show us that this use is counterintuitive: “why must
one calculate the probability of samples that have not been observed?”; “why
one considers the probability of samples outcomes that are more extreme than
the one observed?”; etc. Such difficulties are not encountered with the Bayesian
inference: the posterior distribution, being conditional on data, only involves the
sampling probability of the data in hand , via the likelihood function that writes
the sampling distribution in the “natural order”.

5.2 The Bayesian approach gives tools to overcome usual difficulties

“I stopped teaching frequentist methods when I decided that they could not be
learned” (Berry, 1997).

There are hardly – if not Bayesian – intuitive justifications of frequentist
procedures. On the contrary, with the Bayesian approach, intuitive justifications
and interpretations of procedures can be given, so that the level of mathematical
justifications can be easily adapted to the students state of knowledge. So it can
be argued with Albert (19956, 1997) and Berry (1997) that elementary Bayesian
inference can be taught effectively to undergraduate students and that students
benefit greatly from such instruction. Moreover, an empirical understanding of
probability concepts is gained by applying Bayesian procedures, especially with
the help of computer programs.

Our experience with Bayesian methods is that they allow students to over-
4Retrieved March 9, 2006 from http://www.apa.org/monitor/may99/task.html.
5Retrieved March 9, 2006 from http://www.apa.org/monitor/julaug99/letters.html.
6Retrieved March 9, 2006 from http://www.amstat.org/publications/jse/v3n3/albert.html.
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come usual difficulties encountered with the frequentist approach. Of course, the
following list is not exhaustive and empirical studies for asserting our conclusions
should be welcome.

It can be hard for students to distinguish a parameter, such as a population
mean, from the observed mean statistic computed from a sample. The two no-
tions of posterior distribution and predictive distribution of future data, given
available data, are useful tools to give students an understanding of this essential
distinction. Moreover, the predictive distribution can be used to give, as limit-
ing cases: (1) the sampling distribution of a statistic when the prior distribution
tends to a point distribution (“known parameter”); (2) the posterior distribution
when the sample size of the future data tends to infinity (the parameter can be
seen as the observed statistic in a future sample of very large size).

Moreover, the notions of posterior and predictive distributions, being funda-
mental tools for a better understanding of sample fluctuations, allow the students
to be aware of misconceptions about the replication of experiments. Indeed,
many people overestimate the probability of repeating a significant result (Tver-
sky and Kahneman, 1971; Lecoutre and Rouanet, 1993). Similar misconceptions
are encountered with confidence intervals. An empirical study (Cumming et al.,
2004) suggested that many “leading researchers” in psychology, behavioural neu-
roscience, and medicine “hold the confidence level misconception that a 95% CI
will on average capture 95% of replication means”, underestimating the extent
that future replications will vary.

An important difficulty with the logic of NHST is that it requires that the
hypothesis to be demonstrated should be the alternative hypothesis. Of course
this artifice can be completely avoided with the Bayesian approach, which provide
direct answers to the right questions: “what is the probability that the difference
between two means is large?”; “what is the probability that the difference (in
absolute value) is small?”; “given the current inconclusive partial data, what is
the chance that the final result will be conclusive?”; etc.

Using the fiducial Bayesian interpretations of significance tests and confidence
intervals in the natural language of probabilities about unknown effects comes
quite naturally to students. In return the common misuses and abuses of NHST
appear to be more clearly understood. In particular students become quickly
alerted that nonsignificant results cannot be interpreted as “proof of no effect”.
I completely agree with Berry (1997) who ironically concludes that students ex-
posed only to a Bayesian approach “come to understand the frequentist concepts
of confidence intervals and P values better than do students exposed only to a
frequentist approach”.

An important objective of statistical teaching is to prepare students to read
experimental publications. For the reasons exposed above, with the Bayesian
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approach students are well equipped for an intelligent and critical reading. In
fact, the Bayesian approach fits in better than the frequentist approach with the
usual way of reporting experimental results, which seldom involves explicitly the
basic concepts of the NHST reasoning (null hypothesis, α level . . . ).

By interactively investigating various prior distributions and contrasting the
resulting posterior with the fiducial Bayesian solution, students can gain under-
standing and intuition about the relative roles of sample size, data and external
information. Investigating predictive distributions by varying the respective sam-
ple sizes of the available and future data is also useful to give students an intuitive
understanding of the role of sample size.

5.3 Some possible difficulties with the Bayesian approach

The most often denounced difficulties with the Bayesian approach lie in the
elicitation of the prior distribution. Berry (1997) places emphasis on the fact
that prior and posterior Bayesian distributions are subjective and forces students
to assess their prior probabilities, while recognizing the difficulties of this task
(“they don’t like it”). At least the role of subjective probability should be clarified
(D’Agostini, 1999).

However, insofar as experimental data analysis is concerned , I do not think
that it is a good strategy to draw the attention of students (or researchers) on
an approach that does not answer their expectations (see Section 2.1). So, we
always avoid – at least in a first stage – the issue of assessing a “subjective”
prior distribution and focus our teaching on the fiducial Bayesian procedures.
Once that students will become familiarized with their use and interpretation,
there are appealing ways to introduce “informative” prior distributions at a later
stage. In particular, students generally find attractive to investigate the impact of
a handicap (“skeptical”) prior and to examine if the data give sufficient evidence
to counterbalance it. Priors that express the results of previous experiments are
also generally well-accepted. Finally, on can show that the elicitation of prior
opinions from “experts” in the field can be useful in some studies, but it must be
emphasized that this needs appropriate techniques (see for an example in clinical
trials Tan et al., 2003).

Other difficulties can be due to confusions with the frequentist interpretations.
For instance, some students erroneously conclude from the posterior distribution
that the observed difference – not the population difference – is large, which can be
due to a confusion with the NHST reasoning (a result is significant if the observed
difference is “in a sense” large). A possibility is not to teach frequentist methods
(Berry, 1997). However, in the current context, this is hardly a realistic attitude.
An alternative line of attack is to use the combinatorial (or set-theoretic) infer-
ence approach suggested by Rouanet and Bert (2000) (see also Rouanet, Bernard
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and Lecoutre, 1986; Rouanet, Bernard and Le Roux, 1990). Roughly speaking,
this approach consists of ruling out the “randomness” character of the concept of
sample and to replace probabilistic formulations by formulations in terms of “pro-
portions of samples”. The teaching motivation is to allow students to learn the
computational aspects of frequentist inference procedures without being prema-
turely concerned with the conceptual difficulties of probabilistic concepts. Thus,
the probabilistic formulations – and in particular the interpretation of frequentist
procedures – are reserved to the Bayesian approach, minimizing possible source
of confusions.

6. Conclusion

“It could be argued that since most physicians use statement A [the probability
the true mean value is in the interval is 95%] to describe ‘confidence’ intervals,
what they really want are ‘probability’ intervals. Since to get them they must use
Bayesian methods, then they are really Bayesians at heart!” (Grunkemeier and
Payne, 2002, p.1904)

Nowadays Bayesian routine methods for the familiar situations of experi-
mental data analysis are easy to implement. They fulfill the requirements of
scientists and they fit in better with their spontaneous interpretations of data
than frequentist procedures. So they can be taught to non-statistician students
and researchers in intuitively appealing form. Using the fiducial Bayesian (using
noninformative priors) interpretations of significance tests and confidence inter-
vals in the natural language of probabilities about unknown effects comes quite
spontaneously to students. In return the Bayesian approach bypasses usual dif-
ficulties encountered with frequentist procedures, and in particular the common
misuses and abuses of NHST are more clearly understood. Users’ attention can
be focused to more appropriate strategies such as consideration of the practical
significance of results and the replication of experiments.
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